1. Alat
· Breadboard
· Kabel USB
· Kabel Jumper
2. Bahan
a. Arduino Uno
b. LCD
c. LM35
d. Sensor Flame
e. Sensor DHT 11
f. Sensor MQ-2
g. Potensiometer
h. Buzzer
i. Motor DC
j. Motor servo
k. Logic state
l. Baterai
m. Mosfed
UART (Universal Asynchronous Receiver-Transmitter) adalah bagian perangkat keras komputer yang menerjemahkan antara bit-bit paralel data dan bit-bit seria. UART biasanya berupa sirkuit terintegrasi yang digunakan untuk komunikasi serial pada komputer atau port serial perangkat periperal. Jarak komunikasi yg digunakan tidak lebih dari 15 meter dengan kecepatan 20 kb/s.
1. Arduino uno
Arduino Uno adalah salah satu produk berlabel arduino yang menggunakan mikrokontroler ATMEGA328”. (Kadir, 2013:16). Memiliki 14 pin input dari output digital dimana 6 pin input tersebut dapat digunakan sebagai output PWM dan 6 pin input analog, 16 MHz osilator kristal, koneksi USB, jack power, ICSP header, dan tombol reset. Untuk mendukung mikrokontroler agar dapat digunakan, cukup hanya menghubungkan Board Arduino Uno ke komputer dengan menggunakan kabel USB atau listrik dengan AC yang-ke adaptor-DC atau baterai untuk menjalankannya.
Bagian-bagian Arduino Uno:
a. Soket USB
Soket USB adalah soket untuk kabel USB yang disambungkan ke komputer atau laptop. Berfungsi untuk mengirimkan program ke Arduino dan juga sebagai port komunikasi serial.
b. Digital Pin I/O
Digital Pin I/O adalah pin-pin untuk menghubungkan Arduino dengan komponen atau rangkaian digital. Pada Arduino Uno terdapat 14 digital pin yang berfungsi memberikan nilai logika (0 atau 1). Pin berlabel “~” adalah pin PWM (Pulse Width Modulation).
c. Analog Pin
Analog pin adalah pin-pin yang berfungsi untuk menerima sinyal dari komponen atau rangkaian analog, seperti dari potensiometer, sensor suhu, sensor cahaya, dan lainya lalu mengubahnya menjadi nilai digital. Pada arduino Uno terdapat 6 analog pin dari A0 sampai A5.
d. LED Power Indicator
LED yang akan menyala dan menandakan Arduino telah mendapatkan supply listrik yang sesuai.
e. Tombol RESET
Digunakan untuk mereset atau mengulang program Arduino dari awal
f. Power Jack
Soket baterai atau adaptor digunakan untuk menyuplai Arduino dengan tegangan dari baterai/adaptor 5V-12V pada saat Arduino sedang tidak disambungkan ke komputer. Kalau Arduino sedang disambungkan ke komputer melalui USB. Arduino mendapatkan suplai tegangan dari USB. Sehingga tidak perlu memasang baterai/adaptor saat memprogram Arduino.
Microcontroller |
Atmega328P |
Operating Voltage |
5V |
Input Voltage (recommended) |
7 – 12 V |
Input Voltage (limit) |
6 – 20 V |
Digital I/O Pins |
14 (of which 6 provide PWM output) |
PWM Digital I/O Pins |
6 |
Analog Input Pins |
6 |
DC Current per I/O Pin |
20mA |
DC Current for 3.3V Pin |
50mA |
Flash Memory |
32KB of which 0.5KB used by bootloader |
SRAM |
2 KB |
EEPROM |
1 KB |
Clock Speed |
16 Hz |
2. LCD
LCD (Liquid Crystal Display) 16x2 adalah jenis media tampilan atau Display dari bahan cairan kristal sebagai penampil utama.LCD 16x2 dapat menampilkan sebanyak 32 karakter yang terdiri dari 2 baris dengan tiap baris menampilkan 16 karakter.Pada Arduino untuk mengendalikan LCD Karakter 16x2 untuk librarynya secara default sudah ada librarynya yaitu LiquidCrystal.h. LCD ada bermacam-macam ukuran 8x1, 16x1, 16x2, 16x4, 20x4. Untuk mengendalikan atau mengontrol macam-macam LCD Karakter di atas dapat menggunakan Tutorial ini, perbedaannya hanya pada inisialisasi jumlah kolom dan baris.
1. Pin out diagram LCD 16X2:
2. Pin1 (Ground / Source Pin): Ini adalah pin tampilan GND, digunakan untuk menghubungkan terminal GND unit mikrokontroler atau sumber daya.
3. Pin2 (VCC / Source Pin): Ini adalah pin catu tegangan pada layar, digunakan untuk menghubungkan pin catu daya dari sumber listrik.
4. Pin3 (V0 / VEE / Control Pin): Pin ini mengatur perbedaan tampilan, yang digunakan untuk menghubungkan POT yang dapat diubah yang dapat memasok 0 hingga 5V.
5. Pin4 (Register Select / Control Pin): Pin ini berganti-ganti antara perintah atau data register, digunakan untuk menghubungkan pin unit mikrokontroler dan mendapatkan 0 atau 1 (0 = mode data, dan 1 = mode perintah).
6. Pin5 (Pin Baca / Tulis / Kontrol): Pin ini mengaktifkan tampilan di antara operasi baca atau tulis, dan terhubung ke pin unit mikrokontroler untuk mendapatkan 0 atau 1 (0 = Operasi Tulis, dan 1 = Operasi Baca).
7. Pin 6 (Mengaktifkan / Mengontrol Pin): Pin ini harus dipegang tinggi untuk menjalankan proses Baca / Tulis, dan terhubung ke unit mikrokontroler & terus-menerus dipegang tinggi.
8. Pin 7-14 (Pin Data): Pin ini digunakan untuk mengirim data ke layar. Pin ini terhubung dalam mode dua-kawat seperti mode 4-kawat dan mode 8-kawat. Dalam mode 4-kawat, hanya empat pin yang terhubung ke unit mikrokontroler seperti 0 hingga 3, sedangkan dalam mode 8-kawat, 8-pin terhubung ke unit mikrokontroler seperti 0 hingga 7.
9. Pin15 (+ve pin LED): Pin ini terhubung ke +5V
10. Pin 16 (-ve pin LED): Pin ini terhubung ke GND.
3. LM 35
Sensor suhu LM35 adalah komponen elektronika yang memiliki fungsi untuk mengubah besaran suhu menjadi besaran listrik dalam bentuk tegangan. Sensor Suhu LM35 yang dipakai dalam penelitian ini berupa komponen elektronika elektronika yang diproduksi oleh National Semiconductor. LM35 memiliki keakuratan tinggi dan kemudahan perancangan jika dibandingkan dengan sensor suhu yang lain, LM35 juga mempunyai keluaran impedansi yang rendah dan linieritas yang tinggi sehingga dapat dengan mudah dihubungkan dengan rangkaian kendali khusus serta tidak memerlukan penyetelan lanjutan.
Meskipun tegangan sensor ini dapat mencapai 30 volt akan tetapi yang diberikan kesensor adalah sebesar 5 volt, sehingga dapat digunakan dengan catu daya tunggal dengan ketentuan bahwa LM35 hanya membutuhkan arus sebesar 60 µA hal ini berarti LM35 mempunyai kemampuan menghasilkan panas (self-heating) dari sensor yang dapat menyebabkan kesalahan pembacaan yang rendah yaitu kurang dari 0,5 ºC pada suhu 25 ºC .
Pada Gambar ditunjukan bentuk dari LM35 tampak depan dan tampak bawah. 3 pin LM35 menujukan fungsi masing-masing pin diantaranya, pin 1 berfungsi sebagai sumber tegangan kerja dari LM35, pin 2 atau tengah digunakan sebagai tegangan keluaran atau Vout dengan jangkauan kerja dari 0 Volt sampai dengan 1,5 Volt dengan tegangan operasi sensor LM35 yang dapat digunakan antara 4 Volt sampai 30 Volt. Keluaran sensor ini akan naik sebesar 10 mV setiap derajad celcius sehingga diperoleh persamaan sebagai berikut :
VLM35 = Suhu* 10 mV
Secara prinsip sensor akan melakukan penginderaan pada saat perubahan suhu setiap suhu 1 ºC akan menunjukan tegangan sebesar 10 mV. Pada penempatannya LM35 dapat ditempelkan dengan perekat atau dapat pula disemen pada permukaan akan tetapi suhunya akan sedikit berkurang sekitar 0,01 ºC karena terserap pada suhu permukaan tersebut. Dengan cara seperti ini diharapkan selisih antara suhu udara dan suhu permukaan dapat dideteksi oleh sensor LM35 sama dengan suhu disekitarnya, jika suhu udara disekitarnya jauh lebih tinggi atau jauh lebih rendah dari suhu permukaan, maka LM35 berada pada suhu permukaan dan suhu udara disekitarnya .
Jarak yang jauh diperlukan penghubung yang tidak terpengaruh oleh interferensi dari luar, dengan demikian digunakan kabel selubung yang ditanahkan sehingga dapat bertindak sebagai suatu antenna penerima dan simpangan didalamnya, juga dapat bertindak sebagai perata arus yang mengkoreksi pada kasus yang sedemikian, dengan mengunakan metode bypass kapasitor dari Vin untuk ditanahkan. Berikut ini adalah karakteristik dari sensor LM35:
· Memiliki sensitivitas suhu, dengan faktor skala linier antara tegangan dan suhu 10 mVolt/ºC, sehingga dapat dikalibrasi langsung dalam celcius.
· Memiliki ketepatan atau akurasi kalibrasi yaitu 0,5ºC pada suhu 25 ºC
· Memiliki jangkauan maksimal operasi suhu antara -55 ºC sampai +150 ºC.
· Bekerja pada tegangan 4 sampai 30 volt.
· Memiliki arus rendah yaitu kurang dari 60 µA.
· Memiliki pemanasan sendiri yang rendah (low-heating) yaitu kurang dari 0,1 ºC pada udara diam.
· Memiliki impedansi keluaran yang rendah yaitu 0,1 W untuk beban 1 mA.
· Memiliki ketidaklinieran hanya sekitar ± ¼ ºC.
4. Flame sensor
Sensor api digunakan untuk mendeteksi api atau radiasi. Sensor ini juga dapat mendeteksi sumber cahaya yang memiliki panjang gelombang antara 760 nm hingga 1100 nm. Infa merah merupakan warna dari cahaya tampak dengan panjang gelombang 700 nm sampai 1 mm.
Sedangkan cahaya ultraviolet memancarkan cahaya dengan panjang gelombang sekitar 300 nm – 400 nm. Sensor ini bisa mendeteksi cahaya tampak, sinar infra merah dan sinar ultraviolet. Prinsip kerja sensor api adalah dimulai dari bahwa api akan bisa dideteksi oleh keberadaan spectrum cahaya infra red maupun ultraviolet, dan dari situ semacam sensor dalam flame sensor akan bekerja untuk membedakan spektrum cahaya yang terdapat pada api yang terdeteksi tersebut.(Irkam, 2014:76)
Sensor ini memiliki karakteristik tegangan keluaran saat tidak ada api dan keluaran rendah saat ada api dengan panjang gelombang rendah . Sensor ini dapat mendeteksi gelombang infra merah yang dipancarkan oleh api, sehingga sensor tersebut dapat digunakan sebagai pendeteksi kebakaran.
Sensor ini juga bisa dikemas dalam bentuk modul. Sensor ini memiliki jarak pembacaan (kurang lebih) 100 Cm dengan pembacaan secara garis lurus dari titik api ke sensor. Lampu indikator LED mati atau logika Low (0) jika tidak medeteksi api, sedangkan lampu indikator LED menyala atau logika High (1). Modul ini mempunyai empat pin dan beberapa komponen yang melengkapinya, dengan fungsi masing-masing seperti berikut:
1. VCC: pin ini dihubungkan ke sumber tegangan antara 3,3V hingga 5V.
2. GND: pin ini dihubungkan ke ground.
3. D0: pin ini dihubungkan ke pin digital, dan memberikan keluaran berbentuk digital ( LOW atau HIGH)
4. A0: pin yang dihubungkan ke pin analog input, dan memberikan nilai integer antar 0 dan 1023. 4
5. LM393: IC pendamping atau biasa disebut IC komparator memiliki fungsi untuk membandingkan dua jenis tegangan yang terdapat pada kedua input pada IC tersebut.
6. Photo NPN / Photo Transistor: Transistor yang dapat mengubah energi cahaya menjadi listrik dan memiliki penguat (gain) Internal.
Prinsip Kerja Sensor Api:
Secara umum, prinsip kerja sensor api cukup sederhana, yaitu memanfaatkan sistem kerja metode optik. Optik yang mengandung ultraviolet, infrared, atau pencitraan visual api, dapat mendeteksi adanya percikan api sebagai tanda awal kebakaran. Jika telah terjadi reaksi percikan api yang cukup sering, maka akan terlihat emisi karbondioksida dan radiasi dari infrared
5. DHT 11
DHT11 adalah salah satu sensor yang dapat mengukur dua parameter lingkungan sekaligus, yakni suhu dan kelembaban udara (humidity). Dalam sensor ini terdapat sebuah thermistor tipe NTC (Negative Temperature Coefficient) untuk mengukur suhu, sebuah sensor kelembaban tipe resisitif dan sebuah mikrokontroller 8-bit yang mengolah kedua sensor tersebut dan mengirim hasilnya ke pin output dengan format single-wire bi-directional (kabel tunggal dua arah). Jadi walaupun kelihatannya kecil, DHT11 ini ternyata melakukan fungsi yang cukup kompleks. Kita tinggal ambil outputnya aja, untuk kemudian dimasukkan ke sistem kita.
Sebelum kita bekerja dengan sensor DHT11, ada baiknya kita ketahui dulu spesifikasinya agar tidak salah mengolah hasil pengukurannya :
Pengukuran Kelembaban Udara
· -Resolusi pengukuran: 16Bit
· -Repeatability: ±1% RH
· -Akurasi pengukuran: 25℃ ±5% RH
· -Interchangeability: fully interchangeable
· -Waktu respon: 1 / e (63%) of 25℃ 6 detik
· -Histeresis: <± 0.3% RH
· -Long-term stability: <± 0.5% RH / yr in
Pengukuran Temperatur
· -Resolusi pengukuran: 16 Bit
· -Repeatability: ±0.2℃
· -Range: At 25℃ ±2℃
· -Waktu Respon: 1 / e (63%) 10 detik
Karakteristik Electrikal
· Power supply: DC 3.5 – 5.5V
· Konsumsi arus: measurement 0.3mA, standby 60μ A
· Periode sampling : lebih dari 2 detik
Spesifikasi DHT11:
• Tegangan kerja = 3.3V-5V.
• Arus maksimum = 2.5mA
• Range pengukuran kelembaban = 20%-80%
• Akurasi pengukuran kelembaban = 5%
• Range pengukuran suhu = 0°C-50°C
• Akurasi pengukuran suhu = 2°C
• Kecepatan pengambilan sampel tidak lebih dari 1 Hz (setiap detik)
• Ukuran = 15.5 mm x 12 mm x 5.5 mm
• 4 pin dengan jarak 0,1 "
6. MQ 2 sensor
Sensor MQ-2 adalah salah satu sensor yang sensitif terhadap asap rokok. Bahan utama sensor ini adalah SnO2 dengan konduktifitas rendah pada udara bersih. Jika terdapat kebocoran gas konduktifitas sensor menjadi lebih tinggi, setiap kenaikan konsentrasi gas maka konduktifitas sensor juga naik. Bahan utama sensor ini adalah SnO2 dengan konduktifitas rendah pada udara bersih. Jika terdapat kebocoran gas konduktifitas sensor menjadi lebih tinggi, setiap kenaikan konsentrasi gas maka konduktifitas sensor juga naik. Sensor MQ-2 sensitif terhadap gas LPG, Propana, Hidrogen, Karbon Monoksida, Metana dan Alkohol serta gas mudah terbakar diudara lainnya.
Konfigurasi Sensor MQ-2:
MQ-2 Pin Out
Sensor MQ-2 terdapat 2 masukan tegangan yakni VH dan VC. VH digunakan untuktegangan pada pemanas (Heater) internal dan Vc merupakan tegangan sumber serta memiliki keluaran yang menghasilkan tegangan berupa tegangan analog. Berikut konfigurasi dari sensor MQ-2:
1. Pin 1 merupakan heater internal yang terhubung dengan ground.
2. Pin 2 merupakan tegangan sumber (VC) dimana Vc < 24 VDC.
3. Pin 3 (VH) digunakan untuk tegangan pada pemanas (heater internal) dimana VH = 5VDC.4.
4. Pin 4 merupakan output yang akan menghasilkan tegangan analog.
Prinsip Kerja MQ-2:
Sensor Asap MQ-2 berfungsi untuk mendeteksi keberadaan asap yang berasal dari gasmudah terbakar di udara. Pada dasarnya sensor ini terdiri dari tabung aluminium yang dikelilingi oleh silikon dan di pusatnya ada elektroda yang terbuat dari aurum di mana ada element pemanasnya. Ketika terjadi proses pemanasan, kumparan akan dipanaskan sehingga SnO2 keramik menjadi semikonduktor atau sebagai penghantar sehingga melepaskan elektron dan ketika asap dideteksi oleh sensor dan mencapai aurum elektroda maka output sensor MQ-2 akan menghasilkan tegangan analog. Sensor MQ-2 ini memiliki 6 buah masukan yang terdiri dari tiga buah power supply (Vcc) sebasar +5 volt untuk mengaktifkan heater dan sensor, Vss (Ground), dan pin keluaran dari sensor tersebut.
Spesifikasi sensor pada sensor gas MQ-2 adalah
sebagai berikut:
1. Catu daya pemanas : 5V AC/DC
2. Catu daya rangkaian : 5VDC
3. Range pengukuran : 200 - 5000ppm untuk LPG, propane 300 -
5000ppm untuk butane 5000 - 20000ppm untuk methane 300 -
5000ppm untuk Hidrogen
4. Keluaran : analog (perubahan tegangan)
Sensor ini dapat mendeteksi konsentrasi gas yang mudah
terbakar di udara serta asap dan keluarannya berupa tegangan
analog. Sensor dapat mengukur konsentrasi gas mudah terbakar
dari 300 sampai 10.000 sensor ppm. Dapat beroperasi pada suhu
dari -20°C sampai 50°C dan mengkonsumsi arus kurang dari
150 mA pada 5V
7. POTENSIOMETER
Potensiometer (POT) adalah salah satu jenis Resistor yang Nilai Resistansinya dapat diatur sesuai dengan kebutuhan Rangkaian Elektronika ataupun kebutuhan pemakainya. Potensiometer merupakan Keluarga Resistor yang tergolong dalam Kategori Variable Resistor. Secara struktur, Potensiometer terdiri dari 3 kaki Terminal dengan sebuah shaftatau tuas yang berfungsi sebagai pengaturnya.
Pada dasarnya bagian-bagian penting dalam Komponen Potensiometer adalah:
1. Penyapu atau disebut juga dengan Wiper
2. Element Resistif
3. Terminal
Prinsip Kerja Potensiometer
Sebuah Potensiometer (POT) terdiri dari sebuah elemen resistif yang membentuk jalur (track) dengan terminal di kedua ujungnya. Sedangkan terminal lainnya (biasanya berada di tengah) adalah Penyapu (Wiper) yang dipergunakan untuk menentukan pergerakan pada jalur elemen resistif (Resistive). Pergerakan Penyapu (Wiper) pada Jalur Elemen Resistif inilah yang mengatur naik-turunnya Nilai Resistansi sebuah Potensiometer. Elemen Resistif pada Potensiometer umumnya terbuat dari bahan campuran Metal (logam) dan Keramik ataupun Bahan Karbon (Carbon). Berdasarkan Track (jalur) elemen resistif-nya, Potensiometer dapat digolongkan menjadi 2 jenis yaitu Potensiometer Linear (Linear Potentiometer) dan Potensiometer Logaritmik (Logarithmic Potentiometer).
Fungsi Potensiometer:
Dengan kemampuan yang dapat mengubah resistansi atau hambatan, Potensiometer sering digunakan dalam rangkaian atau peralatan Elektronika dengan fungsi-fungsi sebagai berikut :
1. Sebagai pengatur Volume pada berbagai peralatan Audio/Video seperti Amplifier, Tape Mobil, DVD Player.
2. Sebagai Pengatur Tegangan pada Rangkaian Power Supply
3. Sebagai Pembagi Tegangan
4. Aplikasi Switch TRIAC
5. Digunakan sebagai Joystick pada Tranduser
6. Sebagai Pengendali Level Sinyal
8. BUZZER
Buzzer adalah komponen elektronika yang dapat menghasilkan getaran suara dalam bentuk gelombang bunyi. Buzzer lebih sering digunakan karena ukuran penggunaan dayanya yang minim.
Cara Kerja Buzzer
Tegangan Listrik yang mengalir ke buzzer akan menyebabkan gerakan mekanis, gerakan tersebut akan diubah menjadi suara atau bunyi yang dapat didengar oleh manusia.
10. MOTOR DC
Motor Listrik DC atau DC Motor adalah suatu perangkat yang mengubah energi listrik menjadi energi kinetik atau gerakan (motion). Motor DC ini juga dapat disebut sebagai Motor Arus Searah. Seperti namanya, DC Motor memiliki dua terminal dan memerlukan tegangan arus searah atau DC (Direct Current) untuk dapat menggerakannya. Motor Listrik DC ini biasanya digunakan pada perangkat-perangkat Elektronik dan listrik yang menggunakan sumber listrik DC seperti Vibrator Ponsel, Kipas DC dan Bor Listrik DC.
Prinsip Kerja Motor DC
Terdapat dua bagian utama pada sebuah Motor Listrik DC, yaitu Stator dan Rotor. Stator adalah bagian motor yang tidak berputar, bagian yang statis ini terdiri dari rangka dan kumparan medan. Sedangkan Rotor adalah bagian yang berputar, bagian Rotor ini terdiri dari kumparan Jangkar. Dua bagian utama ini dapat dibagi lagi menjadi beberapa komponen penting yaitu diantaranya adalah Yoke (kerangka magnet), Poles (kutub motor), Field winding (kumparan medan magnet), Armature Winding (Kumparan Jangkar), Commutator (Komutator) dan Brushes (kuas/sikat arang).
Pada prinsipnya motor listrik DC menggunakan fenomena elektromagnet untuk bergerak, ketika arus listrik diberikan ke kumparan, permukaan kumparan yang bersifat utara akan bergerak menghadap ke magnet yang berkutub selatan dan kumparan yang bersifat selatan akan bergerak menghadap ke utara magnet. Saat ini, karena kutub utara kumparan bertemu dengan kutub selatan magnet ataupun kutub selatan kumparan bertemu dengan kutub utara magnet maka akan terjadi saling tarik menarik yang menyebabkan pergerakan kumparan berhenti.
Untuk menggerakannya lagi, tepat pada saat kutub kumparan berhadapan dengan kutub magnet, arah arus pada kumparan dibalik. Dengan demikian, kutub utara kumparan akan berubah menjadi kutub selatan dan kutub selatannya akan berubah menjadi kutub utara. Pada saat perubahan kutub tersebut terjadi, kutub selatan kumparan akan berhadap dengan kutub selatan magnet dan kutub utara kumparan akan berhadapan dengan kutub utara magnet. Karena kutubnya sama, maka akan terjadi tolak menolak sehingga kumparan bergerak memutar hingga utara kumparan berhadapan dengan selatan magnet dan selatan kumparan berhadapan dengan utara magnet. Pada saat ini, arus yang mengalir ke kumparan dibalik lagi dan kumparan akan berputar lagi karena adanya perubahan kutub. Siklus ini akan berulang-ulang hingga arus listrik pada kumparan diputuskan.
11. MOTOR SERVO
Motor servo adalah sebuah perangkat atau aktuator putar (motor) yang dirancang dengan sistem kontrol umpan balik loop tertutup (servo), sehingga dapat di set-up atau di atur untuk menentukan dan memastikan posisi sudut dari poros output motor. motor servo merupakan perangkat yang terdiri dari motor DC, serangkaian gear, rangkaian kontrol dan potensiometer. Serangkaian gear yang melekat pada poros motor DC akan memperlambat putaran poros dan meningkatkan torsi motor servo, sedangkan potensiometer dengan perubahan resistansinya saat motor berputar berfungsi sebagai penentu batas posisi putaran poros motor servo.
Prinsip kerja motor servo:
Motor servo dikendalikan dengan memberikan sinyal modulasi lebar pulsa
(Pulse Wide Modulation / PWM) melalui kabel kontrol. Lebar pulsa sinyal kontrol
yang diberikan akan menentukan posisi sudut putaran dari poros motor servo.
Sebagai contoh, lebar pulsa dengan waktu 1,5 ms (mili detik) akan memutar poros
motor servo ke posisi sudut 90⁰. Bila pulsa lebih pendek dari 1,5 ms maka akan berputar
ke arah posisi 0⁰ atau ke kiri (berlawanan dengan arah jarum jam),
sedangkan bila pulsa yang diberikan lebih lama dari 1,5 ms maka poros motor
servo akan berputar ke arah posisi 180⁰ atau ke kanan
(searah jarum jam).
lebar pulsa kendali telah diberikan, maka poros motor servo akan bergerak atau berputar ke posisi yang telah diperintahkan, dan berhenti pada posisi tersebut dan akan tetap bertahan pada posisi tersebut. Jika ada kekuatan eksternal yang mencoba memutar atau mengubah posisi tersebut, maka motor servo akan mencoba menahan atau melawan dengan besarnya kekuatan torsi yang dimilikinya (rating torsi servo). Namun motor servo tidak akan mempertahankan posisinya untuk selamanya, sinyal lebar pulsa kendali harus diulang setiap 20 ms (mili detik) untuk menginstruksikan agar posisi poros motor servo tetap bertahan pada posisinya.
12. LOGIC STATE
Pemberi logika pada simulasi sensor. Pengertian logis, benar atau salah, dari sinyal biner yang diberikan. Sinyal biner adalah sinyal digital yang hanya memiliki dua nilai yang valid. Dalam istilah fisik, pengertian logis dari sinyal biner ditentukan oleh level tegangan atau nilai arus sinyal, dan ini pada gilirannya ditentukan oleh teknologi perangkat. Dalam sirkuit TTL, misalnya, keadaan sebenarnya diwakili oleh logika 1, kira-kira sama dengan +5 volt pada garis sinyal; logika 0 kira-kira 0 volt.
Tingkat tegangan antara 0 dan +5 volt dianggap tidak ditentukan. Karena hanya dua status logika, logika 1 dan logika 0, yang dimungkinkan, teknik aljabar Boolean dapat digunakan untuk menganalisis rangkaian digital yang melibatkan sinyal biner. Istilah logika positif diterapkan ke sirkuit di mana logika 1 ditetapkan ke level tegangan yang lebih tinggi; Dalam rangkaian logika negatif, logika 1 ditunjukkan dengan level tegangan yang lebih rendah. Lihat juga logika multinilai.
13. Mosfet
MOSFET (Metal Oxide Semiconductor Field Effect Transistor) adalah sebuah perangkat semionduktor yang secara luas di gunakan sebagai switch dan sebagai penguat sinyal pada perangkat elektronik. MOSFET adalah inti dari sebuah IC ( integrated Circuit ) yang di desain dan di fabrikasi dengan single chip karena ukurannya yang sangat kecil. MOSFET memiliki empat gerbang terminal antara lain adalah Source (S), Gate (G), Drain (D) dan Body(B).
MOSFET bekerja secara elektonik memvariasikan sepanjang jalur pembawa muatan ( electron atau hole ). Muatan listrik masuk melalui Saluran pada Source dan keluar melalui Drain. Lebar Saluran di kendalikan oleh tegangan pada electrode yang di sebut dengan Gate atau gerbang yang terletak antara Source dan Drain. ini terisolasi dari saluran di dekat lapisan oksida logam yang sangat tipis. Kapasitas MOS pada komponen ini adalah bagian Utama nya.
Mosfet memiliki dua mode, mode pertama adalah depletion mode dan Enhancement Mode.
Depletion Mode:
Ketika tidak ada tegangan pada Gate maka kondusi channel berada pada kondisi maksimum. Karena tegangan pada gerbang positif atau negative konduksi pada channel menurun.
Enhancement Mode
Ketika tidak ada tegangan pada Gate, MOSFET tidak akan bersifat konduksi. Tegangan yang meningkat pada Gate, maka sifat konduksi pada Channel semakin lebih baik.
Cara Kerja MOSFET
Tujuan dari MOSFET adalah mengontrol Tegangan dan Arus melalui antara Source dan Drain. Komponen ini hampir seluruh nya sebagai switch. Kerja MOSFET bergantung pada kapasitas MOS. Kapasitas MOS adalah bagian utama dari MOSFET. Permukaan semikonduktor pada lapisan oksida di bawah yang terletak di antara terminal sumber dan saluran pembuangan. Hal ini dapat dibalik dari tipe-p ke n-type dengan menerapkan tegangan gerbang positif atau negatif masing-masing. Ketika kita menerapkan tegangan gerbang positif, lubang yang ada di bawah lapisan oksida dengan gaya dan beban yang menjijikkan didorong ke bawah dengan substrat.
Daerah penipisan dihuni oleh muatan negatif terikat yang terkait dengan atom akseptor. Elektron mencapai saluran terbentuk. Tegangan positif juga menarik elektron dari sumber n dan mengalirkan daerah ke saluran. Sekarang, jika voltase diterapkan antara saluran pembuangan dan sumber, arus mengalir bebas antara sumber dan saluran pembuangan dan tegangan gerbang mengendalikan elektron di saluran. Alih-alih tegangan positif jika kita menerapkan tegangan negatif, saluran lubang akan terbentuk di bawah lapisan oksida.
N-Channel MOSFET,
Struktur N-Channel Mosfet atau disebut dengan NMOS terdiri dari subtract tipe P dengan daerah Source dan Drain deberi Difusi N+. Diantara daerah Source dan Drain terdapat sebuah celah sempit dari subtract P yang di sebut dengan channel yang di tutupi oleh isolator yang terbuat dari Si02
P-Channel MOSFET,
P-Channel MOSFET memiliki wilayah P-Channel diantara Source dan Drain. Dia memiliki empat terminal seperti Gate, Drain, Source dan Body. Struktur Transistor PMOS terdiri atas tipe-n dengan daerah Source dan Drain diberi difusi P+.
//MASTER
#include <LiquidCrystal.h>
LiquidCrystal lcd(2,3,4,5,6,7);
int flame_sensor = 9;
#define mq2_sensor A1
#include "DHT.h" //library sensor yang telah diimportkan
#define DHTPIN 8 //Pin apa yang digunakan
#define DHTTYPE DHT11 // DHT 11
DHT dht(DHTPIN, DHTTYPE);
void setup() {
Serial.begin(9600);
pinMode(flame_sensor,INPUT);
lcd.begin(16, 2);
lcd.setCursor(0,2);
lcd.print("kelompok 23");
dht.begin(); //prosedur memulai pembacaan module sensor
void loop() {
int read_flame = digitalRead(flame_sensor);
int read_mq2 = analogRead(mq2_sensor);
float celcius_1 = dht.readTemperature();
lcd.clear();
lcd.setCursor(0,0);
lcd.print("SUHU SAAT INI :");
lcd.setCursor(0,1);
lcd.print(celcius_1);
if(read_flame == HIGH && read_mq2 >23){
Serial.print("1");
lcd.clear();
lcd.setCursor(0,0);
lcd.print("WARNING API");
}
if(read_flame == LOW && read_mq2 <=23){
Serial.print("2");
lcd.setCursor(0,0);
lcd.print("AMAN");
Serial.print("2");
}
if (celcius_1 >29){
lcd.clear();
lcd.setCursor(0,0);
lcd.print("SUHU TINGGI");
}
}
2. Program Slave
//SLAVE
#include<Servo.h>
Servo servo;
int motor = 10;
int buzzer = 9;
void setup() {
servo.attach (11);
pinMode(motor,OUTPUT);
pinMode(buzzer, OUTPUT);
}
void loop() {
if(Serial.available()>0)
{
int data = Serial.read();
if(data=='1'){
digitalWrite(motor,HIGH);
digitalWrite(buzzer,HIGH);
servo.write(180);
delay(100);
}
if (data=='2')
{
digitalWrite(motor,LOW);
digitalWrite(buzzer,LOW);
delay(100);
}
}
}
sensor. Flame sensor disini untuk mendeteksi api, MQ-2 untuk mendeteksi gas
berbahaya dalam pabrik, dan DHT11 untuk mendeteksi suhu ruangan pada pabrik.
Flame sensor, sensor MQ-2, sensor DHT11, dihubungkan ke Arduino pertama
sebagai master yang dihubungkan ke Arduino kedua sebagai slave dengan prinsip
komunikasi UART. Pada project ini menggunakan sistem komunikasi UART
karena untuk memudahkan dalam pembuatan demo project dan pada project ini
hanya memerlukan pengiriman data dari master ke slave saja, dan tidak
memerlukan feedback dari slave ke master. Arduino Master berfungsi untuk
menerima input dari 4 sensor yang digunakan dan mengirimkan perintah-perintah
yang nantinya akan dieksekusi oleh Arduino Slave. Adapun fungsi lain dari
Arduino Master adalah unuk menampilkan suhu yang terukur oleh DHT11 melalui
LCD.
Saat DHT11 mendeteksi suhu melebihi 29 ̊C atau flame sensor mendeteksi api,
atau saat sensor MQ-2 mendeteksi gas, , maka sesuai yang diprogramkan, Adruino
master mengirimkan data serial komunikasi “1” atau “2” ke Arduino Slave melalui
pin TX master ke RX slave. Sedangkan ketika salah satu sensor tersebut tidak
sesuai dengan kondisi sebelumnya, maka Master mengirimkan data serial
komunikasi “3” ke Slave. Selain itu, Master juga mengeluarkan output sinyal
analog pada pin-pin PWM (ditandai simbol “~”) yang terhubung ke LCD. Dengan
begitu, LCD akan menampilkan besar suhu yang terukur oleh DHT11.
Arduino kedua atau Slave yang digunakan untuk merespon data yang dikirim
oleh master berupa output Buzzer dan pengaktifan 1 buah motor servo dan 1 buah
motor pump yaitu berfungsi sebagai membuka pintu dan memompa air.
Berdasarkan program yang dibuat jika flame sensor aktif dan MQ-2 aktif atau pada
saat terjadi kebakaran, maka akan mengaktifkan buzzer sebagai peringatan
terjadinya kebakaran, serta mengaktifkan motor pump yang akan mengeluarkan air
melalui selang untuk memadamkan api kebakaran dan juga pada saat bersamaan
motor servo juga akan aktif sebagai pembuka pintu pabrik tempat jalur evakuasi
keluar dari pabrik.
Berdasarkan hasil percobaan yang telah dilakukan melalui simulasi Alat
Pemadam Kebakaran dan Deteksi Suhu Pabrik Otomatis dapat diperoleh kesimpulan :
a. Alat ini mampu meminimalisir terjadinya korban akibat kebakaran di pabrik, dengan
sistem kerja yang otomatis dan juga ada pemberitahuan dini mengenai suhu
pabrik sebagai pengingat dan penambah tingkat kewaspadaan karyawan pada pabrik.
b. Setiap komponen pada alat ini dapat bekerja sesuai dengan fungsi masing-masing.
Tidak ada komentar:
Posting Komentar