aplikasi 2

[menuju akhir]

 TUGAS PENGAPLIKASIAN MUX-DEMUX – KULKAS KONTROL

1.        Tujuan [kembali]

a.       Mengetahui cara mengaplikasikan muxtiplexer dan demuxtiplexer

b.      Mengetahui cara membuat rangkaian kulkas kontrol

2.        Alat dan bahan [kembali]

Adapun alat dan bahan dalam membuat rangkaiannya yaitu:

A. Alat

1. Baterai 


           Gambar Baterai

         Baterai (Battery) adalah sebuah alat yang dapat merubah energi kimia yang disimpannya menjadi energi Listrik yang dapat digunakan oleh suatu perangkat Elektronik. Hampir semua perangkat elektronik yang portabel seperti Handphone, Laptop, Senter, ataupun Remote Control menggunakan Baterai sebagai sumber listriknya. Dengan adanya Baterai, kita tidak perlu menyambungkan kabel listrik untuk dapat mengaktifkan perangkat elektronik kita sehingga dapat dengan mudah dibawa kemana-mana. Dalam kehidupan kita sehari-hari, kita dapat menemui dua jenis Baterai yaitu Baterai yang hanya dapat dipakai sekali saja (Single Use) dan Baterai yang dapat di isi ulang (Rechargeable).
 
2. Multimeter


Multimeter adalah suatu alat ukur listrik yang digunakan untuk mengukur tiga jenis besaran listrik yaitu arus listrik, hambatan listrik dan tegangan listrik. Sebutan lain untuk multimeter adalah AVO-meter yang merupakan singkatan dari satuan ampere, volt dan ohm.Selain itu, multimeter juga disebut dengan nama multitester.Multimeter terbagi menjadi dua jenis yaitu multimeter analog dan multimeter digital. Perbedaan antara multimeter analog dan multimeter digital terletak pada tingkat ketelitian nilai pengukuran yang diperoleh. Multimeter dapat digunakan untuk pengukuran listrik arus searah maupun pengukuran listrik arus bolak balik

 
 B. Bahan

A.   Sensor suhu (LM35)

Sensor suhu (lm35) adalah sensor yang akan mendeteksi suhu ruangan yang ingin dideteksi. Yang akan berlogika 1 saat suhu terlalu tinggi


 Konfigurasi Pin Sensor MQ2

1. Pin 1 merupakan heater internal yang terhubung dengan ground.

2.  Pin 2 merupakan tegangan sumber (VC) dimana Vc < 24 VDC.

3. Pin 3 (VH) digunakan untuk tegangan pada pemanas (heater internal) dimana VH = 5VDC.

4. Pin 4 merupakan output yang akan menghasilkan tegangan analog.


 Spesifikasi 

  • Sensitivitas tinggi dengan area deteksi luas
  • Long life
  • Detection gas : LPG, i-butane, Propane, Methane, Alkohol, Hidrogen
  • Concentration : 200 - 5000 ppm (LPG dan Propane), 300 - 5000 ppm (Butane), 5000 - 20000 ppm (Methane), 300 - 5000 ppm (Hidrogen), 100 - 2000 ppm (Alkohol)
  • Circuit Voltage (Vc) : 5V
  • Heating Voltage (Vh)  : 1.4V-5V
  • Heating Time Th (High) : 60s
  • Heating Time Th (Low) : 90s
  • Load Resistence (RL) : Adjustable
  • Heater resistance (Rh) : 33 ohm
  • Heater Consumption : <800 mW
  • Sensing resistance : 3K ohm - 30K ohm (pada 1000 ppm iso Butane)
  • Preheat time : >24 jam
Grafik respon sensitifitas Sensor Gas MQ2

 

B.    Sensor infrared

Sensor infrared adalah sensor yang akan mendeteksi sesuatu yang melewati cahaya infrared yang akan berlogika 1 saat sesuatu melewati infrared

  

 Konfigurasi Pin

Pin Name

Description

VCC

Power Supply Input

GND

Power Supply Ground

OUT

Active High Output


grafik respon sensor infrared

 

 

C.    Sensor touch

Sensor touch adalah sensor yang akan mendeteksi sentuhan. Sensor ini akan mengalami perubahan logika 0 ke 1  saat seseorang menyentuhnya dan akan berubah lagi dari 1 ke 0 saat seseorang menyentuhnya lagi.

 Spesifikasi :
  • Operating voltage 2.0V~5.5V
  • Operating current @VDD=3V, no load
  • At low power mode typical 1.5uA, maximum 3.0uA
  • The response time max 220mS at low power mode @VDD=3V
  • Sensitivity can adjust by the capacitance(0~50pF) outside
  • Stable touching detection of human body for replacing traditional direct switch key
  • Provides Low Power mode
  • Provides direct modetoggle mode by pad option(TOG pin) Q pin is CMOS output
  • All output modes can be selected active high or active low by pad option(AHLB pin)
  • After power-on have about 0.5sec stable-time, during the time do not touch the key pad, and the function is disabled
  • Auto calibration for life at low power mode the re-calibration period is about 4.0sec normally, when key detected touch and released touch, the auto re-calibration will be redoing after about 16sec from releasing key
  • The sensitivity of TTP223N-BA6 is better than TTP223-BA6’s. but the stability of TTP223N-BA6 is worse than TTP223-BA6’s.

 Konfigurasi Pin :

* Pin 1 : Vcc

* Pin 2 : Gnd

* Pin 3 : Vout


 grafik respon


D.   Opamp

Opamp adalah komponen elektronika yang akan melakukan penguatan dan penyearah tegangan untuk rangkaian

 konfigurasi pin

Pin-1 dan pin-8 adalah o / p dari komparator
Pin-2 dan pin-6 adalah pembalik i / id
Pin-3 dan pin-5 adalah non inverting i / id
Pin-4 adalah terminal GND
Pin-8 adalah VCC +

 spesifikasi 

  • Ini terdiri dari dua op-amp internal dan frekuensi dikompensasi untuk gain kesatuan
  • Gain tegangan besar adalah 100 dB
  • Lebar pita lebar adalah 1MHz
  • Jangkauan pasokan listrik yang luas termasuk pasokan listrik tunggal dan ganda
  • Rentang catu daya tunggal adalah dari 3V ke 32V
  • Jangkauan pasokan listrik ganda adalah dari + atau -1.5V ke + atau -16V
  • Penyaluran arus pasokan sangat rendah, yaitu 500 μA
  • 2mV tegangan rendah i / p offset
  • Mode umum rentang tegangan i / p terdiri dari ground
  • Tegangan catu daya dan diferensial i / p tegangan serupa ayunan tegangan o / p besar



 

E.    Ic muxtiplexer 74153

Ic muxtiplexer 74153 adalah integrated circuit yang bersifat muxtiflexer dengan dua bentuk muxtiplexer input 4 ke 1 dengan input tambahannya yaitu set A dan B dan adanya enable



F.     Ic demuxtiplexer 74155

Ic demuxtiplexer 74155 adalah integrated circuit yang bersifat demuxtiplexer dengan dua bentuk demux input 1 ke 4 dengan input tambahan yaitu seat A dan B serta adanya enable dan C



G.   Diode

Diode adalah komponen elektronika yang akan menyearahkan tegangan dengan syarat katoda harus lebih kecil dibanding anoda.


 Spesifikasi :
  • Package Type: Available in DO-41 & SMD Packages
  • Diode Type: Silicon Rectifier General Usage Diode
  • Max Repetitive Reverse Voltage is: 1000 Volts
  • Average Fwd Current: 1000mA
  • Non-repetitive Max Fwd Current: 30A
  • Max Power Dissipation is: 3W
  • Max Storage & Operating temperature Should Be: -55 to +175 Centigrade
 Konfigurasi Pin:

Nomor Pin

Nama Pin

Deskripsi

1

Anoda

Arus selalu Masuk melalui Anoda

2

Katoda

Arus selalu Keluar melalui Katoda

 

H.   Transistor

Transistor adalah komponen elektronika yang memiliki 3 terminal yaitu terminal base , collector , emitor . tegangan akan masuk ke relay saat terminal base tidak dialiri tegangan

FEATURES
 • Low current (max. 100 mA)
 • Low voltage (max. 65 V).
DESCRIPTION
 >>NPN transistor in a TO-92; 
 >>SOT54 plastic package. 
 >>PNP complements: BC556 and BC557.
 Konfigurasi Pin
1. Collector
2.  Base
3. Emitter
 
 Spesifikasi :
Transistor Type : NPN
Voltage – Collector Emitter Breakdown (Max) : 45 V
Current- Collector (Ic) (Max) : 100mA
Power – Max : 625 mW
DC Current Gain (hFE) (Min) @ Ic, Vce : 110 @ 2mA, 5V
Vce Saturation (Max) @ Ib Ic : 300mV, @ 5mA, 100mA
Frequency – Transition : 300MHz
Current- Collector Cutoff (Max) : -
Mounting Type : Through Hole
Package / Case : TO-226-3, TO-92-3 (TO-226AA) Formed Leads
Packaging : Tape & Box (TB
Lead Free Status : Lead Free
RoHs Status : RoHs Compliant

Data Sheet Transistor



Grafik Respon:



 

I.       Relay

Relay adalah komponen elektronika yang akan menutup rangkaian jika relay dialiri tegangan


 Konfigurasi PIN Relay

Nomor PIN

Nama Pin

Deskripsi

1

Coil End 1

Digunakan untuk memicu (On / Off) Relay, Biasanya satu ujung terhubung ke 12V dan ujung lainnya ke ground

2

Coil End 2

Digunakan untuk memicu (On / Off) Relay, Biasanya satu ujung terhubung ke 12V dan ujung lainnya ke ground

3

Common (COM)

Common terhubung ke salah satu Ujung Beban yang akan dikontrol

4

Normally Close (NC)

Ujung lain dari beban terhubung ke NO atau NC. Jika terhubung ke NC beban tetap terhubung sebelum pemicu

5

Normally Open (NO)

Ujung lain dari beban terhubung ke NO atau NC. Jika terhubung ke NO, beban tetap terputus sebelum pemicu

 Spesifikasi :
  • Trigger Voltage (Voltage across coil) : 5V DC
  • Trigger Current (Nominal current) : 70mA
  • Maximum AC load current: 10A @ 250/125V AC
  • Maximum DC load current: 10A @ 30/28V DC
  • Compact 5-pin configuration with plastic moulding
  • Operating time: 10msec Release time: 5msec
  • Maximum switching: 300 operating/minute (mechanically)


J.   Lampu

Lampu adalah komponen elektronika yang akan bersinar dan menerangi objek yang memerlukan cahaya


K.    Motor DC

Motor DC adalah komponen elektronika yang akan berputar sesuai dengan rotasi dan akan berputar jika adanya gaya medan magnet pada motor

Features of brushed DC motors
Advantages
    No need for a drive circuit when running at constant speed
    High-efficiency design
    Able to operate at high speeds
    High startup torque
    Responsive and easy to use as speed and torque can be controlled by voltage
Disadvantages
    Motor life is shortened by the need for brushes and a commutator, which are subject to wear.
    The brushes generate both electrical and acoustic noise

 


 Konfigurasi PIN

No:

Pin Name

Description

1

Terminal 1

A normal DC motor would have only two terminals. Since these terminals are connected together only through a coil they have not polarity. Revering the connection will only reverse the direction of the motor

2

Terminal 2

 

 DC Motor Specifications

  • Standard 130 Type DC motor
  • Operating Voltage: 4.5V to 9V
  • Recommended/Rated Voltage: 6V
  • Current at No load: 70mA (max)
  • No-load Speed: 9000 rpm
  • Loaded current: 250mA (approx)
  • Rated Load: 10g*cm
  • Motor Size: 27.5mm x 20mm x 15mm
  • Weight: 17 grams

L.  Heater

Heater adalah komponen elektronika yang akan mengubah energi listrik menjadi panas saat adanya tegangan yang masuk pada heater



M.     Resistor

Resistor adalah komponen elektronika yang akan menghambat arus dan tegangan pada rangkaian


3.      3. Dasar teori [kembali]

A.   Sensor suhu (LM35)

Jual SENSOR SUHU LM35 LM 35 ( ARDUINO ) Indonesia|Shopee Indonesia

Sensor suhu (lm35) adalah sensor yang akan mendeteksi suhu ruangan yang ingin dideteksi. Yang akan berlogika 1 saat suhu terlalu tinggi

Sensor suhu LM35 adalah komponen elektronika yang memiliki fungsi untuk mengubah besaran suhu menjadi besaran listrik dalam bentuk tegangan. Sensor Suhu LM35 yang dipakai dalam penelitian ini berupa komponen elektronika elektronika yang diproduksi oleh National Semiconductor. LM35 memiliki keakuratan tinggi dan kemudahan perancangan jika dibandingkan dengan sensor suhu yang lain, LM35 juga mempunyai keluaran impedansi yang rendah dan linieritas yang tinggi sehingga dapat dengan mudah dihubungkan dengan rangkaian kendali khusus serta tidak memerlukan penyetelan lanjutan.

Meskipun tegangan sensor ini dapat mencapai 30 volt akan tetapi yang diberikan kesensor adalah sebesar 5 volt, sehingga dapat digunakan dengan catu daya tunggal dengan ketentuan bahwa LM35 hanya membutuhkan arus sebesar 60 µA hal ini berarti LM35 mempunyai kemampuan menghasilkan panas (self-heating) dari sensor yang dapat menyebabkan kesalahan pembacaan yang rendah yaitu kurang dari 0,5 ºC pada suhu 25 ºC .

1.     Memiliki ketepatan atau akurasi kalibrasi yaitu 0,5ºC pada suhu 25 º

2.     Memiliki jangkauan maksimal operasi suhu antara -55 ºC sampai +150 ºC.

3.     Bekerja pada tegangan 4 sampai 30 volt.

4.     Memiliki arus rendah yaitu kurang dari 60 µA.

5.     Memiliki pemanasan sendiri yang rendah (low-heating) yaitu kurang dari 0,1 ºC pada udara diam.

6.     Memiliki impedansi keluaran yang rendah yaitu 0,1 W untuk beban 1 mA.

7.     Memiliki ketidaklinieran hanya sekitar ± ¼ ºC.

Grafik sensor LM35:


     Sensor LM35 bekerja dengan mengubah besaran suhu menjadi besaran tegangan. Tegangan ideal yang keluar dari LM35 mempunyai perbandingan 100°C setara dengan 1 volt. Sensor ini mempunyai pemanasan diri (self heating) kurang dari 0,1°C, dapat dioperasikan dengan menggunakan power supply tunggal dan dapat dihubungkan antar muka (interface) rangkaian control yang sangat mudah

     IC LM 35 sebagai sensor suhu yang teliti dan terkemas dalam bentuk Integrated Circuit (IC), dimana output tegangan keluaran sangat linear terhadap perubahan suhu. Sensor ini berfungsi sebagai pegubah dari besaran fisis suhu ke besaran tegangan yang memiliki koefisien sebesar 10 mV /°C yang berarti bahwa kenaikan suhu 1° C maka akan terjadi kenaikan tegangan sebesar 10 mV.

     IC LM 35 ini tidak memerlukan pengkalibrasian atau penyetelan dari luar karena ketelitiannya sampai lebih kurang seperempat derajat celcius pada temperature ruang. Jangka sensor mulai dari – 55°C sampai dengan 150°C, IC LM35 penggunaannya sangat mudah, difungsikan sebagai kontrol dari indicator tampilan catu daya terbelah. IC LM 35 dapat dialiri arus 60 μ A dari supplay sehingga panas yang ditimbulkan sendiri sangat rendah kurang dari 0 ° C di dalam suhu ruangan.

     Untuk mendeteksi suhu digunakan sebuah sensor suhu LM35 yang dapat dikalibrasikan langsung dalam C (celcius), LM35 ini difungsikan sebagai basic temperature sensor.

LAPORAN PRAKTIKUM TEKNOLOGI SENSOR (TKF 3514) MODUL TS 05 SENSOR SUHU

B.    Sensor infrared

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjZqJPoBGg-bhQ7Zhhes8yW62iQXa1y5stDOJYg7LgC71Liu6DyMdt2LwExA-pSRJlM83GoEO1lVYG1TjlD5HCKD0GS3v-flwIvSd9pUrDM9sMCEDD_XE_lGzIxBD1wEAHFSVYBpbP_ydl5mq8seN0G0f52O5eKAE0lzbdx96g9uPGl_FwzAOyCcptx/s1080/IMG_20220528_070923.jpg

Sensor infrared adalah sensor yang akan mendeteksi sesuatu yang melewati cahaya infrared yang akan berlogika 1 saat sesuatu melewati infrared

Infra red (IR) detektor atau sensor infra merah adalah komponen elektronika yang dapat mengidentifikasi cahaya infra merah (infra red, IR). Sensor infra merah atau detektor infra merah saat ini ada yang dibuat khusus dalam satu modul dan dinamakan sebagai IR Detector Photomodules. IR Detector Photomodules merupakan sebuah chip detektor inframerah digital yang di dalamnya terdapat fotodiode dan penguat (amplifier).

Bentuk dan Konfigurasi Pin IR Detector Photomodules TSOP

sistem sensor infra merah pada dasarnya menggunakan infra merah sebagai media untuk komunikasi data antara receiver dan transmitter. Sistem akan bekerja jika sinar infra merah yang dipancarkan terhalang oleh suatu benda yang mengakibatkan sinar infra merah tersebut tidak dapat terdeteksi oleh penerima. Keuntungan atau manfaat dari sistem ini dalam penerapannya antara lain sebagai pengendali jarak jauh, alarm keamanan, otomatisasi pada sistem. Pemancar pada sistem ini tediri atas sebuah LED infra merah yang dilengkapi dengan rangkaian yang mampu membangkitkan data untuk dikirimkan melalui sinar infra merah, sedangkan pada bagian penerima biasanya terdapat foto transistor, fotodioda, atau inframerah modul yang berfungsi untuk menerima sinar inframerah yang dikirimkan oleh pemancar.

1. Resistor : R1 ( 33 K ohm), R2 (1 K ohm ), VR1 (Potensio 100 K ohm)

2. Kapasitor : C1 ( 100nF )

3. Transistor : Q2 ( BC547 )

4. Foto transistor : Q1

5. IC : 40106 (Schimitt trigger), 4026 (Decade counter)

6. 7-Segment

Prinsip Kerja sensor infrared:

Ketika pemancar IR memancarkan radiasi, ia mencapai objek dan beberapa radiasi memantulkan kembali ke penerima IR. Berdasarkan intensitas penerimaan oleh penerima IR, output dari sensor ditentukan.




Rangkaian dasar sensor infrared common emitter yang menggunakan led infrared dan fototransistor

Prinsip kerja rangkaian sensor infrared berdasarkan pada gambar 2. Adalah ketika cahaya infra merah diterima oleh fototransistor maka basis fototransistor akan mengubah energi cahaya infra merah menjadi arus listrik sehingga basis akan berubah seperti saklar (swith closed) atau fototransistor akan aktif (low) secara sesaat seperti gambar 3

Grafik Respon Sensor Infrared

Grafik dibawah menunjukkan hubungan antara resistansi dan jarak potensial untuk sensitivitas rentang antara pemancar dan penerima inframerah. Resistor yang digunakan pada sensor mempengaruhi intensitas cahaya inframerah keluar dari pemancar. Semakin tinggi resistansi yang digunakan, semakin pendek jarak IR Receiver yang mampu mendeteksi sinar IR yang dipancarkan dari IR Transmitter karena intensitas cahaya yang lebih rendah dari IR Transmitter. Sementara semakin rendah resistansi yang digunakan, semakin jauh jarak IR Receiver mampu mendeteksi sinar IR yang dipancarkan dari IR Transmitter karena intensitas cahaya yang lebih tinggi dari IR Transmitter 


C.    Sensor touch


Touch sensor merupakan sebuah lapisan penerima input dari luar monitor. Input dari touchscreen adalah sebuah sentuhan, maka dari itu sensornya juga merupakan sensor sentuh. Biasanya sensor sentuh berupa sebuah panel terbuat dari kaca yang permukaannya sangat responsif jika disentuh. Touch sensor ini diletakkan di permukaan paling depan dari sebuah layar touchscreen, dengan demikian area yang responsif terhadap sentuhan menutupi area pandang dari layar monitor. Maka dari itu ketika kita menyentuh permukaan layar monitornya, input juga telah diberikan oleh kita. Teknologi touch sensor yang kini banyak digunakan terdiri dari tiga macam, seperti yang telah dijelaskan di atas, yaitu Resistive touchscreen, Capasitive touchscreen, dan Surface wave touchscreen. Semua jenis sensor ini memiliki cara kerja yang sama, yaitu menangkap perubahan arus dan sinyal-sinyal listrik yang ada pada sensor tersebut, merekamnya dan mengubahnya menjadi titik-titik koordinat yang berada di atas layar, sehingga posisi tepat dari sebuah sentuhan dapat langsung diketahui dengan benar. 

Spesifikasi :

Berdasarkan fungsinya, Sensor Sentuh dapat dibedakan menjadi dua jenis utama yaitu Sensor Kapasitif dan Sensor Resistif. Sensor Kapasitif atau Capacitive Sensor bekerja dengan mengukur kapasitansi sedangkan sensor Resistif bekerja dengan mengukur tekanan yang diberikan pada permukaannya.

Pengertian SENSOR SENTUH dan jenis-jenisnya (KAPASITIF DAN RESISTIF)

1) Sensor Kapasitif
Sensor sentuh Kapasitif merupakan sensor sentuh yang sangat populer pada saat ini, hal ini dikarenakan Sensor Kapasitif lebih kuat, tahan lama dan mudah digunakan serta harga yang relatif lebih murah dari sensor resistif. Ponsel-ponsel pintar saat ini telah banyak yang menggunakan teknologi ini karena juga menghasilkan respon yang lebih akurat. 
Berbeda dengan Sensor Resistif yang menggunakan tekanan tertentu untuk merasakan perubahan pada permukaan layar, Sensor Kapasitif memanfaatkan sifat konduktif alami pada tubuh manusia untuk mendeteksi perubahan layar sentuhnya. Layar sentuh sensor kapasitif ini terbuat dari bahan konduktif (biasanya Indium Tin Oxide atau disingkat dengan ITO) yang dilapisi oleh kaca tipis dan hanya bisa disentuh oleh jari manusia atau stylus khusus ataupun sarung khusus yang memiliki sifat konduktif.
Pada saat jari menyentuh layar, akan terjadi perubahaan medan listrik pada layar sentuh tersebut dan kemudian di respon oleh processor untuk membaca pergerakan jari tangan tersebut. Jadi perlu diperhatikan bahwa sentuhan kita tidak akan di respon oleh layar sensor kapasitif ini apabila kita menggunakan bahan-bahan non-konduktif sebagai perantara jari tangan dan layar sentuh tersebut.
2) Sensor Resistif
Tidak seperti sensor sentuh kapasitif, sensor sentuh resistif ini tidak tergantung pada sifat listrik yang terjadi pada konduktivitas pelat logam. Sensor Resistif bekerja dengan mengukur tekanan yang diberikan pada permukaannya. Karena tidak perlu mengukur perbedaan kapasitansi, sensor sentuh resistif ini dapat beroperasi pada bahan non-konduktif seperti pena, stylus atau jari di dalam sarung tangan.
Sensor sentuh resistif terdiri dari dua lapisan konduktif yang dipisahkan oleh jarak atau celah yang sangat kecil. Dua lapisan konduktif (lapisan atas dan lapisan bawah) ini pada dasarnya terbuat dari sebuah film. Film-film umumnya dilapisi oleh Indium Tin Oxide yang merupakan konduktor listrik yang baik dan juga transparan (bening).
Cara kerjanya hampir sama dengan sebuah sakelar, pada saat film lapisan atas mendapatkan tekanan tertentu baik dengan jari maupun stylus, maka film lapisan atas akan bersentuhan dengan film lapisan bawah sehingga menimbulkan aliran listrik pada titik koordinat tertentu layar tersebut dan memberikan signal ke prosesor untuk melakukan proses selanjutnya.

Grafik touch sensor

D.   Opamp

Opamp adalah komponen elektronika yang akan melakukan penguatan dan penyearah tegangan untuk rangkaian

Dalam rangkaian Penguat Inverting ini, Op-amp dihubungkan dengan umpan balik untuk menghasilkan operasi loop tertutup. Ketika berhadapan dengan Op-amp ada dua aturan yang sangat penting untuk diingat tentang Op-amp Inverting, ini adalah: "Tidak ada arus mengalir ke terminal input" dan bahwa "V1 selalu sama dengan V2".

     Karakteristik Op amp 

     Karakteristik Faktor Penguat atau Gain pada Op-Amp pada umumnya ditentukan oleh Resistor Eksternal yang terhubung diantara Output dan Input pembalik (Inverting Input). Konfigurasi dengan umpan balik negatif (Negative Feedback) ini biasanya disebut dengan Closed-Loop configuration atau Konfigurasi Lingkar Tertutup. Umpan balik negatif ini akan menyebabkan penguatan atau gain menjadi berkurang dan menghasilkan penguatan yang dapat diukur serta dapat dikendalikan. Tujuan pengurangan Gain dari Op-Amp ini adalah untuk menghindari terjadinya Noise yang berlebihan dan juga untuk menghindari respon yang tidak diinginkan. Sedangkan pada Konfigurasi Lingkar Terbuka atau Open-Loop Configuration, besar penguatannya adalah tak terhingga (∞) sehingga besarnya tegangan output hampir atau mendekati tegangan Vcc.

     


     Secara umum, Operational Amplifier (Op-Amp) yang ideal memiliki karakteristik sebagai berikut :

     1. Penguatan Tegangan Open-loop atau Av = ∞ (tak terhingga)

     2. Tegangan Offset Keluaran (Output Offset Voltage) atau Voo = 0 (nol)

     3. Impedansi Masukan (Input Impedance) atau Zin= ∞ (tak terhingga)

     4. Impedansi Output (Output Impedance ) atau Zout = 0 (nol)

     5. Lebar Pita (Bandwidth) atau BW = ∞ (tak terhingga)

     6m Karakteristik tidak berubah dengan suhu

     Pada dasarnya, kondisi Op-Amp ideal hanya merupakan teoritis dan hampir tidak mungkin dicapai dalam kondisi praktis. Namun produsen perangkat Op-Amp selalu berusaha untuk memproduksi Op-Amp yang mendekati kondisi idealnya ini. Oleh karena itu, sebuah Op-Amp yang baik adalah Op-Amp yang memiliki karakteristik yang hampir mendekati kondisi Op-Amp Ideal.

E.    Ic muxtiplexer 74153

Analysis of a 4-Way Integrated Multiplexer ; the 74153 - Demultiplexers

Ic muxtiplexer 74153 adalah integrated circuit yang bersifat muxtiflexer dengan dua bentuk muxtiplexer input 4 ke 1 dengan input tambahannya yaitu set A dan B dan adanya enable

Ic ini merupakan susunan logika yang mempunyai beberapa jalur input yang kemudian dipindahkan pada sebuah jalur output saja.

Perlu diketahui bahwa output yang dihasilkan oleh multiplexer bukan merupakan gabungan dari berbagai perintah yang dimasukkan. Namun data tersebut akan diseleksi untuk dikeluarkan satu per satu.

Rangkaian digital ini mempunyai kecepatan yang cukup tinggi untuk meneruskan perintah yang telah diseleksi dengan beberapa logika untuk selanjutnya di pindahkan ke sebuah jalur. Perintah dalam bentuk sinyal digital atau biner akan langsung diubah menjadi sinyal analog dengan menggunakan transistor. Setelah itu akan diteruskan kembali menuju proses yang selanjutnya.

F.     Ic demuxtiplexer 74155

Jual IC TTL 74155, 74LS155: Dual 2-Line to 4-Line Decoders/Demultiplexers -  Kota Cimahi - Cimahi Electronic | Tokopedia

Ic demuxtiplexer 74155 adalah integrated circuit yang bersifat demuxtiplexer dengan dua bentuk demux input 1 ke 4 dengan input tambahan yaitu seat A dan B serta adanya enable dan C

Demultiplexer  adalah perangkat yang mengambil  sinyal input yang tunggal yang memilih salah satu dari banyak output yang di data baris yang berhubungan ke input tunggal multimplexer. Satu multiplexer yang banyak dipakai dengan demultiplexer untuk melengkapkan dan  di ujung penerima. Bentuk multiplexer elektronik yang bisa dianggap sebagai beberapa masukan tunggal output switch yang demultiplexer sebagai bentuk masukan tunggak , ganda output switch .

Demultiplexer juga bisa diartikan dengan rangkaian logika yang menerima satu input data yang mendistrubusikan input tersebut yang beberapa output yang telah disediakan juga merupakan kebalikan multiplexer

G.   Diode


Diode adalah komponen elektronika yang akan menyearahkan tegangan dengan syarat katoda harus lebih kecil dibanding anoda.

Dioda (Diode) adalah Komponen Elektronika Aktif yang terbuat dari bahan semikonduktor dan mempunyai fungsi untuk menghantarkan arus listrik ke satu arah tetapi menghambat arus listrik dari arah sebaliknya. Oleh karena itu, Dioda sering dipergunakan sebagai penyearah dalam Rangkaian Elektronika. Dioda pada umumnya mempunyai 2 Elektroda (terminal) yaitu Anoda (+) dan Katoda (-) dan memiliki prinsip kerja yang berdasarkan teknologi pertemuan p-n semikonduktor yaitu dapat mengalirkan arus dari sisi tipe-p (Anoda) menuju ke sisi tipe-n (Katoda) tetapi tidak dapat mengalirkan arus ke arah sebaliknya.


H.   Transistor

Transistor adalah komponen elektronika yang memiliki 3 terminal yaitu terminal base , collector , emitor . tegangan akan masuk ke relay saat terminal base tidak dialiri tegangan

Transistor bipolar memiliki 2 junction yang dapat disamakan dengan penggabungan 2 buah dioda. Emiter-Base adalah satu junction dan Base-Kolektor junction lainnya itulah kenapa disebut (Bipolar Junction Transistor). Seperti pada dioda, arus hanya akan mengalir hanya jika diberi bias positif, yaitu hanya jika tegangan pada material P lebih positif daripada material N (forward bias). Pada gambar ilustrasi transistor NPN berikut ini, junction base-emiter diberi bias positif sedangkan basecolector mendapat bias negatif (reverse bias).

Jika misalnya tegangan base-emitor dibalik (reverse bias), maka tidak akan terjadi aliran elektron dari emitor menuju kolektor. Jika pelan-pelan ‘keran’ base diberi bias maju (forward bias), elektron mengalir menuju kolektor dan besarnya sebanding dengan besar arus bias base yang diberikan. Dengan kata lain, arus base mengatur banyaknya electron yang mengalir dari emiter menuju kolektor.

Pada transistor NPN, semikonduktor tipe-P diapit oleh dua semikonduktor tipe-N. Transistor NPN juga dapat dibentuk dengan menghubungkan anoda dari dua dioda sebagai base dan katoda sebagai kolektor dan emitor. Arus mengalir dari kolektor ke emitor karena potensial kolektor lebih besar daripada base dan emitor

Pada transistor PNP, semikonduktor tipe-N diapit oleh dua semikonduktor tipe-P. Transistor PNP juga dapat dibentuk dengan menghubungkan katoda dari dua dioda sebagai base dan anoda sebagai kolektor dan emitor. Hubungan emitter-base foward bias sementara collector-base reverse bias. Jadi, arus mengalir dari emitor ke kolektor karena potensial emitor lebih besar daripada base dan kolektor.



              

I.       Relay


Relay adalah komponen elektronika yang akan menutup rangkaian jika relay dialiri tegangan

Prinsipo kerjanya yaitu sebuah Besi (Iron Core) yang dililit oleh sebuah kumparan Coil yang berfungsi untuk mengendalikan Besi tersebut. Apabila Kumparan Coil diberikan arus listrik, maka akan timbul gaya Elektromagnet yang kemudian menarik Armature untuk berpindah dari Posisi sebelumnya (NC) ke posisi baru (NO) sehingga menjadi Saklar yang dapat menghantarkan arus listrik di posisi barunya (NO). Posisi dimana Armature tersebut berada sebelumnya (NC) akan menjadi OPEN atau tidak terhubung. Pada saat tidak dialiri arus listrik, Armature akan kembali lagi ke posisi Awal (NC). Coil yang digunakan oleh Relay untuk menarik Contact Poin ke Posisi Close pada umumnya hanya membutuhkan arus listrik yang relatif kecil.

Ada besi atau yang disebut dengan nama inti besi dililit oleh sebuah kumparan yang berfungsi sebagai pengendali. Sehingga kumparan kumparan yang diberikan arus listrik maka akan menghasilkan gaya elektromagnet. Gaya tersebut selanjutnya akan menarik angker untuk pindah dari biasanya tutup ke buka normal. Dengan demikian saklar menjadi pada posisi baru yang biasanya terbuka yang dapat menghantarkan arus listrik. Ketika armature sudah tidak dialiri arus listrik lagi maka ia akan kembali pada posisi awal, yaitu normal 


Kontak Poin (Contact Point) Relay terdiri dari 2 jenis yaitu :

  • Normally Close (NC) yaitu kondisi awal sebelum diaktifkan akan selalu berada di posisi CLOSE (tertutup)
  • Normally Open (NO) yaitu kondisi awal sebelum diaktifkan akan selalu berada di posisi OPEN (terbuka)

Berdasarkan gambar diatas, sebuah Besi (Iron Core) yang dililit oleh sebuah kumparan Coil yang berfungsi untuk mengendalikan Besi tersebut. Berdasarkan penggolongan jumlah Pole dan Throw-nya sebuah relay, maka relay dapat digolongkan menjadi :

  • Single Pole Single Throw (SPST) : Relay golongan ini memiliki 4 Terminal, 2 Terminal untuk Saklar dan 2 Terminalnya lagi untuk Coil.
  • Single Pole Double Throw (SPDT) : Relay golongan ini memiliki 5 Terminal, 3 Terminal untuk Saklar dan 2 Terminalnya lagi untuk Coil.
  • Double Pole Single Throw (DPST) : Relay golongan ini memiliki 6 Terminal, diantaranya 4 Terminal yang terdiri dari 2 Pasang Terminal Saklar sedangkan 2 Terminal lainnya untuk Coil. Relay DPST dapat dijadikan 2 Saklar yang dikendalikan oleh 1 Coil.
  • Double Pole Double Throw (DPDT) : Relay golongan ini memiliki Terminal sebanyak 8 Terminal, diantaranya 6 Terminal yang merupakan 2 pasang Relay SPDT yang dikendalikan oleh 1 (single) Coil. Sedangkan 2 Terminal lainnya untuk Coil.

Untuk lebih jelas mengenai Penggolongan Relay berdasarkan Jumlah Pole dan Throw, silakan lihat gambar dibawah ini :Jenis relay berdasarkan Pole dan Throw

 

J.      Battery


Battery adalah komponen elektronika yang akan menyuplai daya pada seluruh rangkaian

Baterai (Battery) adalah sebuah alat yang dapat merubah energi kimia yang disimpannya menjadi energi Listrik yang dapat digunakan oleh suatu perangkat Elektronik. Baterai atau elemen kering adalah salah satu alat listrik yang berfungsi sebagai penyimpan energi listrik dan mengeluarkan tegangan dalam bentuk listrik (sebagai sumber tegangan). Simbol baterai pada suatu rangkaian listrik dengan tegangan DC atau rangkaian elektronika :

Pada umumnya baterai terdiri dari tiga komponen yang penting yaitu :



1. Batang karbon (C) sebagai anode (kutub positif baterai).

2. Seng (Zn) sebagai katode (kutub negatif baterai)

3. Amonium dioksida (NH4CI) sebagai larutan elektrolit (penghantar)


Terdapat dua jenis baterai yaitu :

1. Baterai Primer 

Baterai adalah baterai yang hanya dapat digunakan sekali, menggunakan reaksi kimia yang tidak dapat dibalik (irreversible reaction). pada umumnya dijual adalah baterai yang bertegangan listrik 1,5 volt.

2. Baterai Sekunder

Baterai sekunder atau biasanya disebut rechargeable battery adalah baterai yang dapat di isi ulang menggunakan reaksi kimia yang bersifat dapat dibalik (reversible reaction) biasanya digunakan pada telepon genggam.

Adapun salah satu persamaan menghitung tegangan adalah :


P = V x I

Keterangan :

P = Daya (W)

V = Tegangan yang terukur (V)

I = Arus yang terukur (I)


K.  LED   


Light Emitting Diode atau sering disingkat dengan LED adalah komponen elektronika yang dapat memancarkan cahaya monokromatik ketika diberikan tegangan maju. LED merupakan keluarga Dioda yang terbuat dari bahan semikonduktor. Warna-warna Cahaya yang dipancarkan oleh LED tergantung pada jenis bahan semikonduktor yang dipergunakannya. LED juga dapat memancarkan sinar inframerah yang tidak tampak oleh mata seperti yang sering kita jumpai pada Remote Control TV ataupun Remote Control perangkat elektronik lainnya. Bentuk LED mirip dengan sebuah bohlam (bola lampu) yang kecil dan dapat dipasangkan dengan mudah ke dalam berbagai perangkat elektronika. Berbeda dengan Lampu Pijar, LED tidak memerlukan pembakaran filamen sehingga tidak menimbulkan panas dalam menghasilkan cahaya. Oleh karena itu, saat ini LED (Light Emitting Diode) yang bentuknya kecil telah banyak digunakan sebagai lampu penerang dalam LCD TV yang mengganti lampu tube. LED hanya akan memancarkan cahaya apabila dialiri tegangan maju (bias forward) dari Anoda menuju ke Katoda. 


Keanekaragaman Warna pada LED tersebut tergantung pada wavelength (panjang gelombang) dan senyawa semikonduktor yang dipergunakannya. Berikut ini adalah Tabel Senyawa Semikonduktor yang digunakan untuk menghasilkan variasi warna pada LED :

1. Bahan Semikonduktor Wavelength Warna

2. Gallium Arsenide (GaAs) 850-940nm Infra Merah

3. Gallium Arsenide Phosphide (GaAsP) 630-660nm Merah

4. Gallium Arsenide Phosphide (GaAsP) 605-620nm Jingga

5. Gallium Arsenide Phosphide Nitride (GaAsP:N) 585-595nm Kuning

6. Aluminium Gallium Phosphide (AlGaP) 550-570nm Hijau

7. Silicon Carbide (SiC) 430-505nm Biru

8. Gallium Indium Nitride (GaInN)


L.    Motor DC



Motor DC adalah komponen elektronika yang akan berputar sesuai dengan rotasi dan akan berputar jika adanya gaya medan magnet pada motor

Prinsip kerja motor DC sendiri yaitu mengubah energi listrik yang didapatkan dari sumber utama, menjadi energi gerak yang digunakan oleh peralatan listrik. Adapun prinsip kerjanya adalah sebagai berikut :

Pertama-tama, arus DC pada rangkaian akan dialirkan pada kumparan. Kemudian, medan magnet yang tercipta akan menghasilkan torsi yang nantinya akan memutar motor.

Setelah terjadi torsi, komutator kemudian akan bekerja yaitu dengan cara menjaga putaran motor listrik agar tetap menghasilkan arus yang searah. Jadi pada alat ini, armature yang dihasilkan oleh medan magnet akan diputar searah sehingga menghasilkan gaya mekanik.

Dengan prinsip kerja di atas tentu tidak heran jika motor DC juga disebut sebagai perangkat elektromekanis. Karena pada dasarnya perangkat tersebut memang menggunakan medan magnet dan konduktor. Utamanya yakni dalam proses menghasilkan energi mekanik atau gerak yang ada pada perangkat elektronik tertentu


      M.  Resistor

      

Resistor merupakan komponen elektronik yang memiliki dua pin dan didesain untuk mengatur tegangan listrik dan arus listrik. Resistor mempunyai nilai resistansi (tahanan) tertentu yang dapat memproduksi tegangan listrik di antara kedua pin dimana nilai tegangan terhadap resistansi tersebut berbanding lurus dengan arus yang mengalir, berdasarkan persamaan hukum Ohm:

{\displaystyle {\begin{aligned}V&=IR\\I&={\frac {V}{R}}\end{aligned}}}

Resistor digunakan sebagai bagian dari rangkaian elektronik dan sirkuit elektronik, dan merupakan salah satu komponen yang paling sering digunakan. Resistor dapat dibuat dari bermacam-macam komponen dan film, bahkan kawat resistansi (kawat yang dibuat dari paduan resistivitas tinggi seperti nikel-kromium).

Karakteristik utama dari resistor adalah resistansinya dan daya listrik yang dapat dihantarkan. Karakteristik lain termasuk koefisien suhuderau listrik (noise), dan induktansiResistor dapat diintegrasikan kedalam sirkuit hibrida dan papan sirkuit cetak, bahkan sirkuit terpadu. Ukuran dan letak kaki bergantung pada desain sirkuit, kebutuhan daya resistor harus cukup dan disesuaikan dengan kebutuhan arus rangkaian agar tidak terbakar.

Sebagian besar resistor yang kamu lihat akan memiliki empat pita berwarna . Begini cara mereka membacanya :
1. Dua pita pertama menentukan nilai dari resistansi
2. Pita ketiga menentukan faktor pengali, yang akan memberikan nilai resistansi.
3. Dan terakhir, pita keempat menentukan nilai toleransi.




    





4.        Percobaan [kembali]

a. prosedur percobaan

    1. Siapkan semua alat dan bahan yang diperlukan

    2. Disarankan agar membaca datasheet setiap komponen

    3. Cari kompnen yang diperlukan di library proteus

    4. Pasang dan simulasikan rangkaian tersebut

 b.  rangkaian simulasi



c. prinsip kerja

Pada rangkaian ini menggunakan 3 sensor yaitu sensor suhu , sensor infrared dan sensor touch . pada saat sensor suhu mendeteksi suhu diatas 7 maka tegangan yang tinggi mengalkir pada opamp inverting yang akan membalikkan tegangan dan menambah besar tegangan sehingga masuk pada ic mux dan ic mux akan menjadikan tegangan itu berupa logika 0. Kemudian pada sensor touch berlogika satu dan akan memberikan tegangan pada terminal enable yang membuat terminal enable berlogika 1 sehingga membuat output y nya berlogika 0. Logika 0 itu akan masuk kepada demux yang akan mengubah outputnya sehingga hanya terminal 1Y0 yang akan berlogika 0. Karena berlogika 0 sehingga terminal base tidak memiliki tegangan dan terminal collector memberikan tegangan pada relay dan relay akan menghubungkan rengkaian sehingga motor yang sebagai pendingin atau pemompa akan bekerja.

Kemudian saat sensor mendeteksi suhu yang terlalu dingin maka sensor itu akan memberikan tegangan yang kecil namun dibalikkan oleh opamp sehingga bertegangan besar dan masuk pada ic mux sehingga berlogika 1 . pada saat terminal A berlogika 1 dan B berlogika 0 maka output y nya akan tetap berlogika 0 dan masuk pada ic demux yang akamn membuat tegangan 1Y1 berlogik 0. Karena berlogika 0 maka terminal Base tidak memiliki tegangan maka tegangan akan masuk pada relay dan relay akan menghubungkan tegangan pada heater

Kemudian saat seseorang membuka pintu kulkas maka sensor infrared akan aktif dan memberikan tegangan pada ic mux sehingga output y berlogika 0 dan masuk ke terminal 1E yang akan membuat output 1Y2 berlogika 0 sehingga tegangan base tidak ada dan membuat tegangan masuk pada relay dan relay menghubungkan tegangan pada motor dan lampu .

Kemudian saat seseorang lupa menutup pintu maka infrared akan terus belogika 1 dan suhu kulkas semakin kecil karena kipas yang terus memberikan udara luar sehingga bertemu langsung dengan butiran es sehingga  input A dan B berlogika 1 maka output pada demux berlogika 0 sehingga terminal Base berlogika 0 sehingga tegangan collector masuk pada relay dan relay menghubungkan tegangan pada motor yang akan menutup pintu dan heater akan hidup untuk menormalisasikan suhu kulkas

 

d. Video simulasi 

e. File download




[menuju awal]

Tidak ada komentar:

Posting Komentar

  Bahan Presentasi untuk Mata Kuliah ELEKTRONIKA 2020/2021 OLEH: Muhammad zikra 2010952052 Dosen Pengampu: Darwison, M.T Referensi: